Journal of Organometallic Chemistry, 219 (1981) 279-293
Elsevier Sequoia S.A., Taucanne - Printed in The Netherlands

NOVEL BERYLLIUM DERIVATIVES OF (CH) ${ }_{n}$ CARBOCYCLES: AN MNDO STUDY

JAMES R. BEWS and CHRISTOPHER GLIDEWELL *
Chemistry Department, University of St. Andrews, St. Andrews, Fife, KY16 9 ST (Great Britain)
(Received April 17th, 1981)

Summary

Structures have been investigated, using MNDO, of beryllium derivatives of the carbocycles $(\mathrm{CH})_{n}$ for n in the range $3-8$. When $n=3$, no minima are found corresponding to η^{3} derivatives, but the beryllium atom always undergoes insertion into the ring: when $n=4$, stable minima are found corresponding to $\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Be}$ of $\mathrm{C}_{4 v}$ symmetry, $\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}\left(D_{2 h}\right)$ and $\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathbf{2}_{2} \mathrm{Be}\left(C_{2 h}\right)$, the latter of which contains planar four-coordinate beryllium. When $n=6$, the minima correspond to ($\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}$) Be of $\mathrm{C}_{2 v}$ symmetry, $\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}\left(D_{2 d}\right)$, $\left(\eta^{1}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}\left(C_{s}\right)$ and $\left(\eta^{2}, \eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}_{2}\left(C_{s}\right) . \mathrm{C}_{7} \mathrm{H}_{7}$ forms an η^{3} derivative, $\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{BeH}$ of C_{s} symmetry, and $\mathrm{C}_{8} \mathrm{H}_{8}$ forms $\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}$ of C_{s} symmetry and $\left(\eta^{2}, \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}\left(C_{2 h}\right)$. The beryllaheterocycles $\mathrm{C}_{n} \mathrm{BeH}_{n}$ (for $n=4,6$, 8) and $\mathrm{C}_{n+1} \mathrm{BeH}_{n+2}$ (for $n=2,4,6$) were also investigated, together with the spiro compounds $\left(\mathrm{C}_{n} \mathrm{H}_{n}\right)_{2} \mathrm{Be}$ for $n=3,4$: the species $\mathrm{C}_{n} \mathrm{BeH}_{n}$ are all planar with $C_{2 v}$ symmetry, but of the species $\mathrm{C}_{n+1} \mathrm{BeH}_{r+2}$ only the 2π-electron species $\mathrm{C}_{3} \mathrm{BeH}_{4}$ is planar: the $4 \pi \mathrm{C}_{5} \mathrm{BeH}_{6}$ and the $6 \pi \mathrm{C}_{7} \mathrm{BeH}_{8}$ are non planar. $\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)_{2} \mathrm{Be}$ adopts a $D_{2 d}$ geometry, but $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$ undergoes ring opening to yield a nonplanar isomer of $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}$. High symmetry species, constrained to $D_{n h}, D_{n d}$ or $C_{n u}$, are also discussed.

Introduction

Beryllium forms a number of pentahapto cyclopentadienyl derivatives, including $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Be}$ and the series $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{BeX}$, where $\mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{Br}, \mathrm{CCH}$, and CH_{3}. It is therefore of interest to investigate the structures of compounds formed between beryllium and other monocyclic $\mathrm{C}_{n} \mathrm{H}_{n}$ hydrocarbons: although this is a difficult and hazardous undertaking experimentally, it is readily feasible when undertaken computationally. Here we report the results of a theoretical

[^0]exploration of the main structural features of derivatives of beryllium containing one or two ligands $\mathrm{C}_{n} \mathrm{H}_{n}$ where n ranges from 3 up to 8.

Method

Calculations were made using the MNDO method [1]: initially, completely free optimisations, with no geometrical constraints were undertaken for each system starting from several different input geometries. Subsequently, optimisations were made subject to the constraints of particular point groups: within these point groups, all independent geometric variables were optimised. The resulting molecular energies are summarised for both free and constrained optimisations in Table 1 , and the corresponding molecular geometries are recorded in Tables 2 and 3.

Molecular structures

Two types of molecules were investigated, those containing polyhapto ligands, and those which are beryllaheterocycles. Free optimisations were undertaken in both classes for derivatives of the carbocycles $\mathrm{C}_{n} \mathrm{H}_{n}$ for values of \boldsymbol{n} ranging up to 8 . These will be discussed in groups, in order of increasing n : finally constrained systems of high symmetry will be discussed.

Species containing polyhapto ligands

$\mathrm{C}_{3} \mathrm{H}_{3}$ dcrivatives. Free optimisation of species containing one or two $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}$ rings, and these species are discussed under the heading Beryllaheterocycles, below.
$\mathrm{C}_{4} \mathrm{H}_{4}$ derivatives. We have previously [2] recorded that the free optimisation of $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Be}$ starting from approximately $C_{4 v}$ yields a singlet of exact $C_{4 v}$ symmetry in which the carbocycle is exactly planar, or a triplet of $C_{2 v}$ symmetry in which the carbocycle is puckered.

Two minima were found for $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$ when inputs analogous to beryllocene were employed: when the optimisation was started from an input geometry of approximately $D_{4 h}$ symimetry, i.e. with the two $\mathrm{C}_{4} \mathrm{H}_{4}$ rings eclipsed, the structure optimised to exact $D_{2 h}$ symmetry with the rings still planar and parallel, but rectangular rather than square. The bonded distances in the rings are 1.436 \AA and $1.535 \AA$, rather similar to the bonded distances calculated for singlet cyclobutadiene, $1.357 \AA$ and $1.534 \AA$: the structure is shown in Fig. 1a. The interaction between the beryllium atom and the two rings is almost exclusively in terms of the p orbitals on the carbon atoms which are of π symmetry with respect to the rings. These eight orbitals in $D_{2 h}$ span the symmetry classes $A_{g}+B_{1 g}+B_{2 g}+B_{3 g}+A_{u}+B_{1 u}+B_{2 u}+B_{3 u}$, while the atomic orbitals of the beryllium atom span the classes $A_{z}(2 s)+B_{1 u}+B_{2 x}+B_{3 \mu}\left(2 p_{x, y, z}\right)$. There are therefore four bonding orbitals, which are in fact in the order $A_{g}, B_{1 u}, B_{2 u}, B_{3 u}$; four non-bonding orbitals, $B_{3 g}, B_{2 g}, B_{1 g}, A_{u}$; and four antibonding orbitals A_{g}, $B_{2 u}, B_{1 u}$ and $B_{3 u}$. There are ten electrons in all in this metal-ligand system, eight in the four bonding orbitals and one non-bonding pair in $B_{3 g}$. In a similar way, the interaction between the beryllium atom in ($\mathrm{C}_{4} \mathrm{H}_{4}$) Be and the carbocycle is largely via the π system of the ring; the carbon $p \pi$ orbitals span the symmetry

Fig. 1. a, The structure of $\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$; b, the structure of $\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{4}\right){ }_{2} \mathrm{Be}$.
classes in $C_{4 v}: A_{1}+B_{1}+E$, while the beryllium atomic orbitals span the classes $2 A_{1}+E$. There are consequently three bonding orbitals ($A_{1}+E$), two nonbonding $\left(A_{1}+B_{1}\right)$ and three antibonding $\left(E+A_{1}\right)$: the six available electrons occupy the three bonding orbitals.

The second minimum for $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$ was found by starting the optimisation at approximately $D_{4 d}$ symmetry. The resulting structure, which is shown in Fig. 1 b , has overall $C_{2 h}$ symmetry and contains dihapto-cyclobutenyl ligands compared with tetrahapto-cyclobutadiene ligands in the $D_{2 h}$ isomer. The beryllium atom forms four bonds to four individual carbon atoms, and these bonds are strictly coplanar: this is a very unusual stereochemistry for beryllium, and has generally been observed only when forced upon the beryllium atoms, as for example in beryllium phthalocyanine [3].
$\mathrm{C}_{5} \mathrm{H}_{5}$ derivatives. The question of η^{1}, η^{5} isomerism in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BeX}$ compounds has been discussed by Dewar and Rzepa [4]: we have also discussed the question of the location of the beryllium atom in the isolated molecule of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Be}$ [2], and no further investigation of these species has been undertaken during the present work.
$\mathrm{C}_{6} \mathrm{H}_{6}$ derivatives. In $\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Be}$ the beryllium atom may be considered to be a six-electron atom, while in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{BeX}$ where $\mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{Br}, \mathrm{CH}_{3}$ or $\mathrm{C} \equiv \mathrm{CH}$, the beryllium atom may be considered to be an eight-electron atom. Similarly in the solid state where $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Be}$ is η^{1}, η^{5} at 120 K [5] and η^{3}, η^{3} at room temperature [6], the beryllium atom here is always an eight electron atom: in the gas phase the asymmetric placing of the beryllium atom in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Be}$ [7], suggesting a major contribution from the form [$\left.\left(7^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Be}\right]^{+}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)^{-}$is here indicative of a six-electron beryllium atom.

It is therefore of considerable interest to investigate the structures of species containing one or more $\mathrm{C}_{6} \mathrm{H}_{6}$ rings and one or two beryllium atoms. $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$ would, if the ring were η^{6}, contain an eight electron beryllium atom: $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$ on the other hand seems unlikely to adopt a symmetric η^{6}, η^{6} structure, as this would involve a fourteen electron beryllium atom in either $D_{6 h}$ or $D_{6 d}$ symmetry.

Optimisation of the geometry of $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$ from an input of approximate $C_{6 u}$

TABLE 1
MOLECULAR ENERGIES AND POINT GROUPS

Molecule	Point group	Figure	$\Delta H_{f}^{-}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
(a) Polyhapto species			
$\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Be}$	$C_{4 u}$		453.8
$\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$	$D_{2 h}$	1 a	634.3
$\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$	$C_{2 h}$	1b	562.6
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{BeH}$	$C_{5 v}$		53.7
$\left(7^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Be}$	$D_{\text {sd }}$		199.4
$\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$	c_{20}	2a	218.6
$\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$	$\mathrm{D}_{2} d$	2 b	454.4
$\left(\eta^{1}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$	C_{s}	2c	227.9
$\left(\eta^{2}, \eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}_{2}$	c_{s}	2d	358.3
$\left(n^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{BeH}$	c_{s}	3	113.8
$\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}$	C_{s}	4 a	192.9
$\left(7^{2}, \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}$	$C_{2 h}$	4b	174.3
(b) Beryllaheterocycles			
$\mathrm{C}_{3} \mathrm{BeH}_{4}$	$C_{2 v}$	5 a	157.7
$\mathrm{C}_{3} \mathrm{BeII}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)$	c_{s}	5b	382.2
$\left(\mathrm{H}_{3} \mathrm{C}_{3}\right)_{2} \mathrm{Be}$	$D_{2 d}$	5 c	299.3
$\mathrm{C}_{4} \mathrm{BeH}_{4}$	$C_{2 v}$	6a	130.9
$\mathrm{C}_{5} \mathrm{BeH}_{6}$	c_{s}	6b	$133.0{ }^{\text {a }}$
$\mathrm{C}_{6} \mathrm{BeH}_{6}$	$C_{2 v}$	6c	64.2
$\mathrm{C}_{7} \mathrm{BeH}_{8}$	c_{s}	6d	$194.0{ }^{\text {b }}$
$\mathrm{C}_{8} \mathrm{CBH}_{8}$	C_{20}	6 e	199.6
$\mathrm{C}_{8} \mathrm{BeH}_{8}$	c_{2}	6 f	125.7
(c) $D_{n h}, D_{n d}$, and $C_{n u}$ species			
$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right) \mathrm{BeH}$	$C_{3 v}$		461.9
$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)_{2} \mathrm{Be}$	$\mathrm{D}_{3} \mathrm{~h}$		777.4
$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)_{2} \mathrm{Be}$	$D_{3} \mathbf{d}$		812.0
$\left(\mathrm{H}_{3} \mathrm{C}_{3}\right)_{2} \mathrm{Be}$	$\mathrm{D}_{2} \mathrm{~h}$		479.7
$\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$	$\mathrm{D}_{4} \mathrm{~h}$		698.5
$\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$	$\mathrm{D}_{4 d}$		680.4
$\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$	$C_{6 u}$		431.0
$\left(7^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$	$D_{6 h}$		507.2
$\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$	$D_{6 d}$		511.6
$\left(\eta^{6}, \eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}_{2}$	${ }^{D_{6} h}$		752.5
$\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{BeH}$	C_{70}		229.7
$\left(\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}$ $\left(\eta^{8}, \eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}$	C_{80}		465.1
$\left(\eta^{8}, \eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}$	$D_{8 h}$		940.5

${ }^{a} \Delta H_{\mathrm{f}}^{\boldsymbol{\theta}}$ is $144.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ when planar. ${ }^{b} \Delta H_{\mathrm{f}}^{\boldsymbol{\sigma}}$ is $222.3 \mathrm{kJJ} \mathrm{mol}^{-1}$ when planar.
symmetry yields a structure of exact $C_{2 u}$ symmetry, as shown in Fig. 2a: this structure contains a dihapto ligand which is very similar to the newly discovered valence isomer of $\mathrm{C}_{6} \mathrm{H}_{6}$ recently described in reference [8] as isomer V , although with extensive bond fixation (see Table 2). In this dihapto complex, the beryllium atom can be regarded as a four-electron atom; however the eight electron η^{6} isomer of $C_{6 v}$ symmetry is some $212 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher in energy (see Table 1).

For $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$, two optimisations were performed starting from both approximately $D_{6 h}$ and approximately $D_{6 d}$ inputs. The optimisation starting from approximately $D_{6 d}$ rapidly converged to a geometry of $D_{2 d}$ symmetry in which each of the rings is puckered in the same way as in $\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$ and in which the four bonds from beryllium are quasi-tetrahedral with CBeC angles of 88.1°

Fig. 2. a, The structure of ($\left.\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$; b, the structure of $\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$; c , the structure of $\left(\eta^{1}-\mathrm{C}_{6} \mathrm{H}_{6}\right)$ -$\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$; d , the structure of $\left(\eta^{2}, \eta^{2}-\mathrm{C}_{6} \mathrm{II}_{6}\right) \mathrm{Be}_{2}$.
$(\times 2)$ and $121.2^{\circ}(\times 4)$. Again, extensive bond fixation occurs in the ligands: the beryllium atom can here be regarded as a six-electron atom; the structure of this bis-dihapto complex is shown in Fig. 2b. The $D_{6 d}$ isomer containing two η^{6} rings is only $57.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher in energy. The optimisation starting from a $D_{6 h}$ input was extremely lengthy, requiring some 22 hours of CPU time on the VAX 11/780 computer: during the course of the optimisation, the structure passed through a number of well defined geometries, none of which proved to represent a minimum on the potential energy surface. From the bis-hexahapto start of $D_{6 h}$ symmetry, the structure first approached a bis-dihapto configuration of $D_{2 h}$ symmetry, analogous to the structure in Fig. 2 b with puckered rings, but with the four $\mathrm{Be}-\mathrm{C}$ bonds coplanar: at this point the ΔH_{f}^{\ominus} is around $395 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which should be compared with a value of $507.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in the fully constrained $D_{6 h}$ structure. Proceeding with the optimisation, one $\mathrm{C}_{6} \mathrm{H}_{6}$ ring remained in the puckered η^{2} configuration throughout, but the other then became planar again and symmetrically bound to the beryllium atom to give a η^{2}, η^{6} configuration: at this point ΔH_{f}^{-}was around $290 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Beyond this point, the η^{2} ring remained essentially unchanged but the other changed from $\boldsymbol{\eta}^{6}$ to $\boldsymbol{\eta}^{1}$, yielding finally the structure shown in Fig. 2c.

In this η^{1}, η^{2} molecule, the total electron population calculated for the beryllium atom is $3.762 e$, whereas in the isomeric η^{2}, η^{2} species it is 3.502 e : similarly in $\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$, the beryllium population is 3.596 e . The much higher population in the η^{1}, η^{2} isomer, together with the planarity of the η^{1} ring, suggests that it should be regarded as a charge transfer complex between $\mathrm{C}_{6} \mathrm{H}_{6}$ and

TABLE 2
MOLECULAR GEOMETRIES FOR FREE OPTIMISATIONS
Distances X, Y in \AA : bond angles $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and torsional angles $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ in degrees

Molecules	Structural data
(a) Polyhapta species	
$\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$	$\begin{aligned} & \text { BeC. } 1.946 ; \mathrm{CC}, 1.535(X 4), 1.436(X 4) ; \mathrm{CH}, 1.076 ; \mathrm{HCC}, 131.5 ; \mathrm{HCCC} \\ & 159.8 \end{aligned}$
$\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Be}$	$\begin{aligned} & B e C(1), 1.781(X 4) ; C(1) C(2), 1.532(X 4) ; C(1) C\left(1^{\prime}\right), 1.515(\times 2) ; \\ & C(2) C\left(2^{\prime}\right) ; 1.362(\times 2) ; C(1) H, 1.087 ; C(2) H, 1.074 ; H C(1) C(2), 124.4 ; \\ & H C(1) C\left(1^{i}\right), 129.1 ; H C(2) C(1), 130.4 ; H C(2) C\left(2^{\prime}\right), 136.7 ; C B e C, \\ & 50.3(X 2), 129.7(X 2) ; \text { dihedral } 106.7 \end{aligned}$
$\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$	BeC(1), 1.717(X2); $\mathrm{BeC}_{2}, 2.195(X 4)$; C(1)C(2), 1.535(X4): C(2)C(2'), 1.376(X2), 2.492(X2), 2.847(X2): C(1)C(1'), 2.694; HC(1), 1.094(X2): $\mathrm{HC}(2), 1.086(\mathrm{X} 4): \mathrm{HC}(1) \mathrm{C}(2), 115.5 ; \mathrm{HC}(2) \mathrm{C}(1), 119.7$: $\mathrm{HC}(1) \mathrm{C}(2) \mathrm{C}\left(2^{\prime}\right)$. 179.8; $\mathrm{HC}(2) \mathrm{C}\left(2^{\prime}\right) \mathrm{C}(1), 179.8$; dihedral in ring, 137.3
$\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$	```BeC(1), 2.002(X 4); BeC(2), 2.235(X8); C(1)C(2), 1.463(X 8); C(2)C(2'), 1.402(X4), 2.522(X4), 2.886(X4); C(1)C(1'), 2.783(X2); HC(1), 1.092(X4); HC(2), 1.089(X8); HC(1)C(2), 117.9; HC(2)C(1), 119.7; HC(1)C(2)C(2'), 181.3: HC(2)C(2')C(1), 180.9; dihedral in ring, 158.5```
$\left(\eta^{1}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$	
$\left(\eta^{2} \cdot \eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}_{2}$	$\mathrm{Be}(1) \mathrm{C}(1), 1.690(\mathrm{X} 2): \mathrm{Be}(1) \mathrm{C}(2), 2.325(\times 2): \mathrm{Be}(1) \mathrm{C}(3) .2 .222(\times 2):$ $\mathrm{Be}(2) \mathrm{C}(1), 2.473(\mathrm{X} 2): \mathrm{Be}(2) \mathrm{C}(2), 2.194(\mathrm{X} 2)$: $\mathrm{Be}(2) \mathrm{C}(3) .1 .656(\mathrm{X} 2)$: C(1)C(2), 1.556(X2); C(1)C(3), 1.585(X2); C(1)C(1'), 2.751(X1); $C(2) C\left(2^{\prime}\right), 1.403(X 1) ; C(3) C\left(3^{\prime}\right), 1.728(X 1) ; C(1) C\left(2^{\prime}\right), 2.506(X 2)$; $C(1) C\left(3^{\prime}\right), 2.697(\times 2): C(2) C(3), 2.447(\times 2) ; C(2) C\left(3^{\prime}\right), 2.901(\times 2) ;$ C(1)H. $1.095(\times 2)$: C(2)H, $1.090(X 2)$: C(3)H, $1.093\left(\mathrm{X}^{2}\right)$.
$\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{BeH}$	BeC(1), $1.744(\times 1): B e C(2), 2.438(\times 2): B e C(3), 2.581(\times 2): B e C(4)$, 2.221(X2); C(1)C(2), 1.510(X2): C(2)C(3), 1.363(X2); C(3)C(4), $1.479(X 2) ; C(4) C\left(4^{\prime}\right), 1.385(\times 1) ; C(3) C\left(3^{\prime}\right), 3.146(\times 1) ; C(2) C\left(2^{\prime}\right)$. 2.511(X1); $\mathrm{HBe}, 1.292 ; \mathrm{HC}(1), 1.105 ; \mathrm{HC}(2), 1.091 ; \mathrm{HC}(3), 1.091 ;$ $\mathrm{HC}(4), 1.099 ; \mathrm{HC}(1) \mathrm{C}(2), 112.2 ; \mathrm{HC}(2) \mathrm{C}(3), 121.7 ; \mathrm{HC}(3) \mathrm{C}(4), 115.8$; $\mathrm{HC}(4) \mathrm{C}\left(4^{\prime}\right), 118.2$.
$\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}$	BeC(1), 2.175(X2): $\operatorname{BeC}(2), 1.681(X 2) ; \operatorname{BeC}(3), 2.546(X 2) ; B e C(4)$, 2.969(X2); C(1)C(2). 1.546; C(2)C(3), 1.508; C(3)C(4), 1.357; $C(4) C\left(4^{\prime}\right), 1.467 ; C(3) C\left(3^{\prime}\right), 3.301 ; C(2) C\left(2^{\prime}\right), 2.898 ; C(1) C\left(1^{\prime}\right), 1.368 ;$ $\mathrm{HC}(1), 1.089 ; \mathrm{HC}(2), 1.106 ; \mathrm{HC}(3), 1.097 ; \mathrm{HC}(4), 1.100 ; \mathrm{HC}(1) \mathrm{C}(2)$. 117.9; $\mathrm{HC}(2) \mathrm{C}(3), 110.6 ; \mathrm{HC}(3) \mathrm{C}(4), 117.2 ; \mathrm{HC}(4) \mathrm{C}\left(4^{\prime}\right), 111.7$.
$\left(\eta^{2}, \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}$	$\begin{aligned} & \mathrm{BeC}(1), 2.445(\times 4) ; \mathrm{BeC}(2), 1.744(\times 4) ; \mathrm{C}(1) \mathrm{C}(2), 1.543(\times 4) ; \mathrm{C}(2) \mathrm{C}\left(2^{\prime}\right), \\ & 1.392(\times 2) .2 .840(\times 2), 3.261(\times 2): \mathrm{C}(1) \mathrm{C}\left(1^{\prime}\right) .1 .601(\times 2) .3 .598(\times 2) . \\ & 3.858(\times 2) ; \mathrm{HC}(1), 1.092(\times 4) ; \mathrm{HC}(2) .1 .098(\times 4) ; \mathrm{BeBe}^{\prime} .2 .566 ; \\ & \mathrm{HC}(1) \mathrm{C}(2), 122.4 ; \mathrm{HC}(2) \mathrm{C}(1), 113.2 ; \text { ring dihedrai. } 99.9 . \end{aligned}$
(b) Beryllaheterocycles	
$\mathrm{C}_{3} \mathrm{BeH}_{4}$	BeC, 1.753(X2); CC, $1.416(\times 2)$; BeH, 1.295; CH, $1.087(\times 2), 1.086(\times 1)$; CBeC, 80.3; CCC, 105.9: HCBe, 150.4.
$\mathrm{C}_{3} \mathrm{BeH}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)$	BeC(1), 1.753(X2); C(1)C(2), 1.415(X): BeC(3), 1.678(X 1); C(3)C(4), 1.525(X2); C(4)C(4'), $1.323(X 1)$: C(1)H, 1.087; C(2)H, 1.086; C(3)H, 1.119; C(4)H, 1.062; C(1)BeC(1'), 80.2; BeC(1)C(2).87.0; C(1)C(2)C(1'). 105.8 ; $\mathrm{BeC}(3) \mathrm{C}(4), 129.1 ; \mathrm{C}(1) \mathrm{BeC}(3), 139.8 ; \mathrm{HC}(1) \mathrm{Be}, 150.3$: HC(3)Be, 108.3; HC(4)C(3), 144.3 ; dihedral, 134.3.

TABLE 2 (continued)

Molecules	Structural data
$\left(\mathrm{H}_{3} \mathrm{C}_{3}\right)_{2} \mathrm{Be}$	$\mathrm{BeC}(1), 1.773(\times 4) ; \mathrm{C}(1) \mathrm{C}(2), 1.412(\times 4) ; \mathrm{C}(1) \mathrm{H}, 1.088(\times 4) ; \mathrm{C}(2) \mathrm{H}$, 1.085(X2): CBeC, 78.6(X2), 126.8(X4): CCC. 105.4(X2): HCBe, 149.8 (X4).
$\mathrm{C}_{4} \mathrm{BeH}_{4}$	BeC(1), 1.649(X2); C(1)C(2), 1.371(X2);C(2)C(2'), $1.535(\times 1):$ $\mathrm{C}(1) \mathrm{H}, 1.084(\times 2) ; \mathrm{C}(2) \mathrm{H}, 1.089(\times 2)$; $\mathrm{BeC}(1) \mathrm{C}(2), 90.5 ; \mathrm{C}(1) \mathrm{C}(2) \mathrm{C}\left(2^{\prime}\right)$. 119.2: $\mathrm{C}(1) \mathrm{BeC}\left(1^{\prime}\right), 120.6$; $\mathrm{HC}(1) \mathrm{C}(2), 123.3$; $\mathrm{HC}(2) \mathrm{C}(1), 124.6$.
$\mathrm{C}_{5} \mathrm{BeH}_{6}$	$\mathrm{BeC}(1), 1.719(\times 2): C(1) \mathrm{C}(2), 1.395(\times 2), \mathrm{C}(2) \mathrm{C}(3), 1.422(\times 2) ; \mathrm{BeC}(2)$, $2.574(\times 2) ; B e C(3), 2.847(\times 1) ; C(1) C(3), 2.474(\times 2) ; C(1) C\left(1^{\prime}\right), 2.860$ (X 1); $\mathrm{C}(2) \mathrm{C}\left(2^{\prime}\right), 2.546(X 1) ; \mathrm{C}(1) \mathrm{C}\left(2^{\prime}\right), 3.037(X 2) ; \mathrm{BeH}, 1.317 ; \mathrm{C}(1) \mathrm{H}$, $1.097(\mathrm{X} 2): \mathrm{C}(2) \mathrm{H}, 1.094(\times 2)$: C(3)H, 1.094(X1); $\mathrm{HC}(1) \mathrm{C}(2), 117.6(\mathrm{X} 2)$: HC(2)C(3), 116.7(X2); HC(3)C(2), 116.4; HBeC(1), 120.0.
$\mathrm{C}_{6} \mathrm{BeH}_{6}$	BeC(1), 1.618(X2); C(1)C(2), 1.367(X2):C(2)C(3), 1.460(X2): $C(3) C\left(3^{\prime}\right), 1.365(\times 1) ; B e C(1) C(2), 111.1(\times 2) ; C(1) C(2) C(3), 130.2(\times 2)$; $\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}\left(3^{\prime}\right), 134.0(\mathrm{X} 2) ; \mathrm{C}(1) \mathrm{BeC}\left(1^{\prime}\right), 149.3 ; \mathrm{HC}(1), 1.095(\times 2)$: HC(2), $1.100(\times 2) ; H C(3), 1.101(\times 2) ; H C(1) C(2), 118.0(\times 2):$ $\mathrm{HC}(2) \mathrm{C}(3), 112.1(\times 2) ; \mathrm{HC}(3) \mathrm{C}\left(3^{\prime}\right), 114.6(\times 1)$.
$\mathrm{C}_{7} \mathrm{BeH}_{8}$	$\begin{aligned} & \mathrm{BeC}(1), 1.703(\times 2) ; \mathrm{C}(1) \mathrm{C}(2), 1.385(\times 2) ; \mathrm{C}(2) \mathrm{C}(3), 1.415(\times 2) ; \\ & \mathrm{C}(3) \mathrm{C}(4), 1.400(\times 2) ; \mathrm{BeC}(1) \mathrm{C}(2), 128.1(\times 2) ; \mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3), 130.7(\times 2) ; \\ & \mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4), 136.4(\times 2) ; \mathrm{C}(3) \mathrm{C}(4) \mathrm{C}\left(4^{\prime}\right), 137.4(\times 1) ; \mathrm{C}(1) \mathrm{BeC}\left(1^{\prime}\right), \\ & 113.2 ; \mathrm{BeH,} 1.315(\times 1) ; \mathrm{C}(1) \mathrm{HI}, 1.106(\times 2) ; \mathrm{C}(2) \mathrm{H}, 1.102(\times 2) ; \mathrm{C}(3) \mathrm{H}, \\ & 1.106(\times 2) ; \mathrm{C} 4 \mathrm{H}, 1.105(\times 1) ; \mathrm{HC}(1) \mathrm{C}(2), 114.8(\times 2): \mathrm{HC}(2) \mathrm{C}(3), \\ & 112.7(\times 2) ; \mathrm{HC}(3) \mathrm{C}(4), 111.7(\times 2) ; \mathrm{HC}(4) \mathrm{C}(3), 111.4(\times 1) ; \mathrm{HBeC}(1), \\ & 122.8 . \end{aligned}$
$\mathrm{CaSeH}_{8}\left(\mathrm{C}_{2 v}\right)$	BeC(1), 1.621(X2):C(1)C(2), 1.350(X2); C(2)C(3), 1.464(X2); $\mathrm{C}(3) \mathrm{C}(4), 1.353(\times 2) ; C(4) \mathrm{C}\left(4^{\prime}\right), 1.461(\times 1) ; B e C(1) \mathrm{C}(2), 124.3(\times 2)$: $C(1) C(2) C(3), 133.0(\times 2) ; C(2) C(3) C(4), 142.0(\times 2) ; C(3) C(4) C\left(4^{\prime}\right)$, 145.4(X2); C(1)BeC(1'), 170.1; HC(1), 1.104(×2); $\mathrm{HC}(2), 1.103(\times 2)$; HC(3), 1.109(X2): HC(4), 1.112(X2): HC(1)C(2). 116.3(X2): HC(2)C(3). 110.3(X2); $\mathrm{HC}(3) \mathrm{C}(4) .110 .9(\times 2)$; $\mathrm{HC}(4) \mathrm{C}\left(4^{\prime}\right)$. 105.4(X2).
$\mathrm{C}_{8} \mathrm{BeH}_{8}\left(\mathrm{C}_{2}\right)$	$B e C(1), 1.677(\times 2): C(1) C(2), 1.361(\times 2), C(2) C(3), 1.481(\times 2) ;$ $C(3) C(4), 1.368(\times 2) ; C(4) C\left(4^{\prime}\right), 1.494 ; B e C(1) C(2), 102.8(\times 2)$; $C(1) C(2) C(3), 117.8(\times 2) ; C(2) C(3) C(4), 125.8(\times 2) ; C(3) C(4) C\left(4^{\circ}\right)$, 79.9(X2): C(1)BeC(1'), 203.5(X1); HC(1), 1.090(X2): HC(2), 1.090 (X2): HC(3), 1.096(X2): HC(4), 1.099(X2): HC(1)C(2), 121.4(X2); $\mathrm{HC}(2) \mathrm{C}(3), 117.0(\times 2)$; $\mathrm{HC}(3) \mathrm{C}(4), 115.3(\times 2)$: $\mathrm{HC}(4) \mathrm{C}\left(4^{\prime}\right), 118.1(\times 2)$.

($\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}$)Be: the process
$\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow\left(\eta^{1}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}$
is exothermic by $79.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, whereas the analogous process

$$
\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}
$$

would be exothermic by no more than $15-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Optimisation of the geometry of $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}_{2}$ from a starting point of approximately $D_{6 h}$ symmetry, with one beryllium atom on each side of the ring, gave the structure shown in Fig. 2d. In this the two beryllium atoms are no longer equivalent, but the ring is puckered as in the previous $\mathrm{C}_{6} \mathrm{H}_{6}$ derivatives. One beryllium atom, $\mathrm{Be}(1)$, is bonded to a pair of para carbon atoms, $\mathrm{C}(1)$, with a bonded $\mathrm{Be}(1) \mathrm{C}(1)$ distance of 1.690° and distances $\mathrm{Be}(1) \mathrm{C}(2)$ and $\mathrm{Be}(1) \mathrm{C}(3)$ of $-2.324 \AA$ and $2.222 \AA$, respectively. The other beryllium atom, $\mathrm{Be}(2)$, on the

Fig. 3. The structure of $\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{BeH}$.
other hand, is bonded to a pair of ortho carbon atoms, C(3), with a bonded $B e(2) C(3)$ distance of $1.656 \AA$: this beryllium atom lies below the central plane $\mathrm{C}(2) \mathrm{C}\left(2^{\prime}\right) \mathrm{C}(3) \mathrm{C}\left(3^{\prime}\right)$ of the ring, but is much closer to $\mathrm{C}(3)$ and $\mathrm{C}\left(3^{\prime}\right)(2.194 \AA)$ than to $C(2)$ and $C\left(2^{\prime}\right)(2.473 \AA)$. The ring is essentially a puckered form of cyclohexenetetrayl, and each of the beryllium atoms may be regarded as a fourelectron atom.
$\mathrm{C}_{7} \mathrm{H}_{7}$ derivatives. A symmetric η^{7} ring in $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{BeH}$ implies a ten-electron beryllium atom and is therefore unlikely to be found: when the geometry of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{BeH}$ was optimised starting from a $C_{7 v}$ input, the resulting structure contained an η^{3} ring and had overall C_{s} symmetry as shown in Fig. 3; in this species the beryllium is formally a six-electron atom. There is a strong π-bond fixation in the ring: although the beryllium atom is four coordinate, the bond angles at this atom are very far from tetrahedral: CBeC, $36.3^{\circ}(\times 1), 93.5^{\circ}(\times 2) ; \mathrm{CBeH}$, 150.7° (X 1), 114.3° (X 2).
$\mathrm{C}_{8} \mathrm{H}_{8}$ derivatives. Optimisation of $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}$ from a starting point of approximately $C_{8 v}$ symmetry leads to the C_{s} structure shown in Fig. 4a, in which the

a

Fig. 4. a. The structure of $\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}$; B , the structure of $\left(\eta^{2} \cdot \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}$.

TABLE 3
GEOMETRIES IN CONSTRAINED POINT GROUPS
Distances in \AA. angle in degrees
$\left.\begin{array}{lllllllll}\text { Molecule } & \text { Point } \\ \text { group }\end{array}\right]$
beryllium atom spans 1,4 positions in an η^{2} ligand: there is strong π-bond fixation in the ring which contains three double bonds, $\mathrm{C}(1) \mathrm{C}\left(1^{\prime}\right), \mathrm{C}(3) \mathrm{C}(4)$, and $\mathbf{C}\left(3^{\prime}\right) \mathbf{C}\left(4^{\prime}\right)$. This complex contains a four-electron beryllium atom. When the optimisation of $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{2} \mathrm{Be}_{2}$ is begun from an approximately $D_{8 h}$ input, the

TABLE 4
SYMMETRIES AND ENERGIES (eV) OF π MOLECULAR ORBITALS IN C 4 AND C3Be RINGS
(a) Monocyclic molecules

$\mathrm{C}_{3} \mathrm{BeH}_{4} \cdot \mathrm{C}_{20}\left({ }^{1} \mathrm{~A}_{1}\right)$	$\mathrm{C}_{3} \mathrm{BeH}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3}\right), \mathrm{C}_{5}\left({ }^{\prime} A^{\prime}\right)$	$\left.\mathrm{C}_{4} \mathrm{H}_{4}, D_{2 h}{ }^{1} A_{g}\right)$	$\mathrm{C}_{4} \mathrm{H}_{4}, D_{4 h}\left({ }^{\mathbf{3}} \mathrm{A}_{2 g}\right)$
$B_{1} \quad 3.364$	$A^{\prime} \quad 3.292$	$A_{u} \quad 2.047$	$B_{2 u} \quad 1.919$
$B_{1} 0.399$	$A^{\prime} \quad 0.477$	$\mathrm{B}_{2 \mathrm{~g}} \quad 0.124$	--------
$A_{2} \quad-1.469$	$A^{\prime \prime} \quad-1.387$	$\overline{B_{1 g}} \quad-8.443$	$E_{g} \quad-4.141$
$B_{2} \quad-11.564$	$A^{\prime} \quad-11.397$	$B_{3 u} \quad-11.880$	$\mathrm{A}_{24}-11.747$

(b) Bicyclic molecules

spir	$\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)_{2}, D_{2 h}\left({ }^{1} A_{1}\right)$	spiro- $\mathrm{Be}\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)_{2}, D_{2 h}\left({ }^{1} A_{g}\right)$	
E	1.582.	$\boldsymbol{B}_{3} \boldsymbol{u}$	4.137
		$B_{2 g}$	1.979
A_{2}	-0.531	$\mathrm{B}_{3 \boldsymbol{u}}$	1.079
A_{2} B_{1}	-0.628	\boldsymbol{A}_{u}	-0.307
B_{1}	-0.628	$\boldsymbol{B}_{1 g}$	$\bigcirc 0.376$
E	-9.775	$B_{2 g}$	-10.208
		$\mathrm{B}_{3}{ }^{\text {u }}$	-10.915

structure converges to $C_{2 h}$ symmetry, as shown in Fig. (4b), with beryllium atoms spanning the 1,4 and 5,8 positions of a bis-dihapto ligand, in which again strong π-bond fixation occurs (see Table 2).

Beryllaheterocycles
$\mathrm{C}_{3} \mathrm{H}_{3}$ derivatives. When the free optimisation of $\left(\mathrm{C}_{3} \mathrm{H}_{3}\right) \mathrm{BeH}$ was started from an input point of approximately $C_{3 v}$ symmetry, the resulting structure was one in which the berylium atom was inserted into the C_{3} ring to yield a completely planar $\mathrm{C}_{3} \mathrm{BeH}_{4}$ beryllacyclobutadiene of overall $C_{2 \nu}$ symmetry. This is a system in which four π molecular orbitals, normal to the molecular plane, are occupied by only two electrons: the energies and symmetries of these orbitals are listed in Table 4 where they may be compared with those for the singlet and triplet states of the prototype cyclobutadiene. This molecule is shown in Fig. 5a: it is impossible to draw a single classical valence structure.

Completely free optimisation of $\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)_{2} \mathrm{Be}$ from either a $D_{3 h}$ or a $D_{3 d}$ input gave a structure in which the beryllium atom was inserted into one of the \mathbf{C}_{3} rings to yield a $\mathrm{C}_{3} \mathrm{Be}$ heterocycle exactly as for $\left(\mathrm{C}_{3} \mathrm{H}_{3}\right) \mathrm{BeH}$ but the substituent on beryllium was now not hydrogen but a Δ^{2}-cyclopropenyl group. The molecule has C_{s} symmetry overall, and is shown in Fig. 5b: again the heterocycle is completely planar with two π electrons, and the π molecular energy levels are very similar to those in $\mathrm{C}_{3} \mathrm{BeH}_{4}$ (see Table 4), being only weakly perturbed by the orbitals of the cyclopropenyl ring. The principal perturbation results from the two single $\mathbf{C - C}$ bonds of the C_{3} ring.

Although optimisations starting from $D_{3 h}$ or $D_{3 d}$ inputs lead to insertion of the beryllium atom in one ring only, it is quite plausible for the beryllium to be at the ring junction of a spiro compound. Optimisations from a spiro input of either approximately $D_{2 h}$ or $D_{2 d}$ symmetry both yielded a structure of exact $D_{2 d}$ symmetry which is shown in Fig. $5 c$; when the optimisation was constrained

Fig. 5. a, The structure of $\mathrm{C}_{3} \mathrm{BeH}_{4}: b$, the structure of $\mathrm{C}_{3} \mathrm{BeH}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3}\right)$: c, the structure of $\left(\mathrm{H}_{3} \mathrm{C}_{3}\right)_{2} \mathrm{Be}$.

a

b

e

f

Fig. 6. a, The structure of $\mathrm{C}_{4} \mathrm{BeH}_{4}$; b, the structure of $\mathrm{C}_{5} \mathrm{BeH}_{6}$: c , the structure of $\mathrm{C}_{6} \mathrm{BeH}_{6}$: d. the structure of $\mathrm{C}_{7} \mathrm{BeH}_{8}:$, the structure of $\mathrm{C}_{8} \mathrm{BeH}_{8}$ ($C_{2 v}$ isomer): $\mathrm{f}_{\mathbf{2}}$ the structure of $\mathrm{C}_{8} \mathrm{BeH}_{8}$ (C_{2} isomer).
to $D_{\mathbf{2 h}^{h}}$ symmetry, the energy was some $180 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher than for $D_{2 d}$. The geometry of each ring in the $D_{2 d}$ spiro compound is very similar to those in monocyclic $\mathrm{C}_{3} \mathrm{Be}$ rings, except that the CBe bonds are slightly ($0.02 \AA$) longer: in the $D_{2 h}$ isomer these bonds are of length $1.841 \AA$, some $0.07 \AA$ longer than for $D_{2 d}$. For the planar $D_{2 h}$ isomer, the seven π molecular orbitals span the symmetry classes $B_{1 g}+2 B_{2_{g}}+A_{u}+3 B_{3 u}$ of which the totally in-phase $B_{3 u}$ and one $B_{2 g}$ are occupied by the four available π electrons, equivalent to two π electrons per ring. In the $D_{2 d}$ isomer the out-of-plane $p \pi$ orbitals, of which there are now only six, span the symmetry classes $A_{2}+B_{1}+2 E$ of which one E pair is occupied. If the π system of each ring is regarded as an allyl fragment, for which in local $C_{2 \nu}$ symmetry the three π combinations have symmetries B_{1} (bonding), A_{2} (non-bonding) and B_{1} (antibonding) then their interaction in $D_{2 d}$ gives from the two bonding B_{1} orbitals, the lower E pair, from the two antibonding B_{1} orbitals, the upper E pair, and from the two non-bonding A_{2} orbitals, the A_{2} and B_{1} orbitals in $D_{2 d}$. Again there are four electrons occupying the π bonding E orbitals, equivalent to two π electrons per ring.
$\mathrm{C}_{4} \mathrm{H}_{4}$ derivatives. Just as the beryllium atom can be inserted into a threemembered carbocycle to produce a planar $\mathrm{C}_{3} \mathrm{Be}$ ring, as described above, so also $\mathrm{C}_{4} \mathrm{Be}$ rings are possible. Optimisation of an input geometry corresponding to a 1-beryllacyclopentadiene yields a structure of strict $C_{2 v}$ symmetry, as shown in Fig. 6a. This planar structure is a 4π-electron cycle and unlike its 6π-electron analogue, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)^{-}$, exhibits strong π bond fixation: the two $\mathrm{C}=\mathrm{C}$ distances are $1.371 \AA$ while the unique $\mathrm{C}-\mathrm{C}$ distance is $1.525 \AA$. These may be compared with the corresponding values of 1.361 and $1.478 \AA$, respectively, calculated for the neutral $\mathrm{C}_{5} \mathrm{H}_{6}$ which also necessarily exhibits bond fixation and with $1.418 \AA$ in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)^{-}$. Table 5 lists the π bond energies and symmetries in $\mathrm{C}_{4} \mathrm{BeH}_{4},\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)^{-}$, and in the analogous $\left(\mathrm{P}_{3} \mathrm{~S}_{2}\right)^{+}$ion [9]. Inspection of the coefficients of the occupied π orbitals in $\mathrm{C}_{4} \mathrm{BeH}_{4}$ shows that the B_{1} orbital is concentrated largely in the CC bonds having a rather small coefficient, 0.257 , at beryllium: the A_{2} orbital on the other hand is concentrated exclusively in the CC bonds, with a nodal plane perpendicular to the $\mathrm{C}_{4} \mathrm{Be}$ plane at beryllium.

For a spiro derivative of $\mathrm{C}_{4} \mathrm{H}_{4}$ analogous to that shown in Fig. 5c, again two

TABLE 5
SYMMETRIES AND ENERGIES (eV) OF π MOLECULAR ORBITALS IN C 5 AND C4Be RINGS

$\mathrm{C}_{4} \mathrm{BeH}_{4}$	$\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{5} \mathrm{H}_{6}$	$\left(\mathrm{P}_{3} \mathrm{~S}_{2}\right)^{+}$
$B_{1} \quad 3.275$			$A_{2} \quad-7.735$
	$E_{2}^{\prime \prime} \quad 7.938$	$A_{2} \quad 1.891$	
$\boldsymbol{A l}_{1} 1.981$			$B_{1} \quad-8.668$
	-------	$B_{1} \quad 0.307$	-
$B_{1} 0.134$	$E_{1}^{\prime \prime} \quad-2.137$	---------	$B_{1} \quad-16.050$
---------		$A_{2} \quad \mathbf{9 . 0 4 6}$	
$A_{2} \quad-8.805$			$A_{2} \quad-17.739$
	$A_{2}^{\prime \prime} \quad-6.110$	$B_{1} \quad-10.841$	
$B_{1} \quad-11.372$			$B_{1} \quad-20.054$

optimisations were initiated from inputs of approximately $D_{2 d}$ and $D_{2 h}$ symmetry, respectively. Although in these two inputs the $\mathrm{C}_{4} \mathrm{Be}$ rings were in one case co-planar and in the other mutually perpendicular, each optimisation converged to the same minimum, Figure 6f.

Other beryllaheterocycles. Like $\mathrm{C}_{3} \mathrm{BeH}_{4}$ and $\mathrm{C}_{4} \mathrm{BeH}_{4}$, both $\mathrm{C}_{6} \mathrm{BeH}_{6}$ and $\mathrm{C}_{8} \mathrm{BeH}_{8}$ optimise to structures of $C_{2 \nu}$ symmetry, shown in Figs. 6c and 6e respectively. In contrast, both $\mathrm{C}_{5} \mathrm{BeH}_{6}$ and $\mathrm{C}_{7} \mathrm{BeH}_{8}$ optimise to non-planar geometries, as shown in Figs. 6b and 6d, respectively: in each case the energy difference between the puckered structure and the planar form is modest (Table 1). $\mathrm{C}_{5} \mathrm{BeH}_{6}$ has a planar C_{5} fragment, but the C_{7} fragment in $\mathrm{C}_{7} \mathrm{BeH}_{8}$ forms a nonplanar shallow boat.

For species in which classical valence forms can be written, i.e. those having two-cocrdinate beryllium of general type $\mathrm{C}_{n} \mathrm{BeH}_{n}$ (n even) exhibit marked π bond fixation with alternation of CC bond distances round the ring: those for which no such classical forms can be written, which contain three coordinate beryllium, $\mathrm{C}_{\mathrm{n}+1} \mathrm{BeH}_{n+2}$ (n even) show a much less marked alternation of bond distances, with the suggestion of less bond fixation and greater π electron delocalisation. In this respect it is therefore somewhat surprising that it is just these species $\mathrm{C}_{n+1} \mathrm{BeH}_{n+2}$ for $n=4$ and 6 , which optimise to non-planar geometries, while those species $\mathrm{C}_{n} \mathrm{BeH}_{n}$ with $n=6$ and 8 , in which least π delocalisation occurs, optimise to strictly planar $C_{2 v}$ structures.

In a $C_{2 v}$ species $C_{n} \mathrm{BeH}_{n}$ (n even), containing a total of $n+1$ ring atoms, the π molecular orbitals of the ring comprise $\frac{1}{2} n$ of A_{2} symmetry and $\frac{1}{2} n+1$ of B_{1} symmetry. In the corresponding $C_{2 v}$ species $\mathrm{C}_{n+1} \mathrm{BeH}_{n+2}$ with $n+2$ ring atoms, the π molecular orbitals comprise $\frac{1}{2} n$ of A_{2} symmetry and $\frac{1}{2} n \div 2$ of B_{1} symmetry. These correlate immediately with the π orbitals of planar carbocycles of $D_{n h}$ symmetry, given in Table 6 for $n=4-9$. With an even number of carbon atoms, the π orbitals of a (CH$)_{n}$ carbocycle consists of two singly degenerate orbitals $A_{2 \mu}$ and either $B_{2 u}$ or $B_{2 g}$ depending on whether $n=4 p$ or $4 p+2$ where p is a positive integer, together with $\frac{1}{2}(n-2)$ doubly degenerate E pairs: with an odd number of carbon atoms, there is a single non-degenerate orbital $A_{2}^{\prime \prime}$ together with $\frac{1}{2}(n-1) E$ pairs. On lowering the symmetry from $D_{n h}$ to $C_{2 v}$, all types of E split to $\left(A_{2}+B_{1}\right)$; in addition $A_{2}^{\prime \prime}$ always correlates with B_{1} and both $B_{2_{g}}$ and $B_{2_{2}}$ with B_{1}, accounting for the excess of one B_{1} orbital in the $\mathrm{C}_{n} \mathrm{BeH}_{n}$ examples and the excess of two B_{1} orbitals in the $\mathrm{C}_{n+1} \mathrm{BeH}_{n+2}$: the extra B_{1}

TABLE 6
 METRY

$D_{4 h}$	$D_{5 h}$	$D_{6 h}$	$D_{7 h}$	$D_{8}{ }_{h}$	$D_{9 h}$
$\begin{aligned} & B_{2 u} \\ & E_{g} \end{aligned}$	$\begin{aligned} & E_{2}^{\prime \prime} \\ & E_{1}^{1} \\ & A_{2}^{12} \end{aligned}$	$\mathrm{B}_{2 \mathrm{~L}}$$\mathbf{E}_{2}$$\mathrm{E}_{1 \mathrm{~L}}$	$\begin{aligned} & E_{3}^{\prime \prime} \\ & E_{2}^{\prime \prime} \end{aligned}$	$\mathrm{B}_{2 \mathrm{u}}$	$E_{4}^{\prime \prime}$
				${ }_{\text {E }}^{\text {E }}$ g	E $E_{3}^{\prime \prime}$
				$\mathrm{E}_{2} \mathrm{~L}$	E_{2}
		$E_{1 g}$ $A_{2 u}$	${ }^{E_{2}^{1 /}}$	$\mathrm{E}_{1 \mathrm{~g}} \mathrm{~g}$ $\mathrm{~A}_{2 u}$	${ }^{\text {E }}{ }_{2}^{1 /}$

species arise from the singly degenerate orbitals of the $D_{n h}(\mathrm{CH})_{n}$ carbocycle, which occur at the bottom and top (for n even) of the π manifolds. The energies of the π orbitals in the beryllaheterocycles containing $5,6,7$, or 8 carbon atoms are shown in Table 7. Always there is a B_{1} orbital both at the bottom and at the top of the π manifold.

For the freely optimised structures of $\mathrm{C}_{5} \mathrm{BeH}_{6}$ and $\mathrm{C}_{7} \mathrm{BeH}_{8}$ which are no longer planar, but which have C_{s} symmetry, although $\sigma-\pi$ separation is not complete, the orbitals of approximate π character can still be readily identified from the eigenvectors, and these are also listed in Table 7. In C_{2} symmetry (see below), A_{2} and B_{1} of $C_{2 v}$ become A and B respectively: in C_{s} symmetry if $\sigma(z x)$ is retained, A_{2} and B_{1} of $C_{2 v}$ become $A^{\prime \prime}$ and A^{\prime} respectively.

There remains the C_{2} isomer of $\mathrm{C}_{8} \mathrm{BeH}_{8}$ shown in Fig. 6f: this structure results from the optimisation of spiro- $\mathrm{Be}\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2}$, starting with either a planar $D_{2 h}$ or a $D_{2 d}$ input. It is considerably more stable, ca. $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$, than the planar isomer obtained by optimising a planar monocyclic input. The molecule contains a re-entrant angle at beryllium, with the consequent close approach of beryllium to two of the carbon atoms $C(4)$ and $C\left(4^{\prime}\right), 2.296 \AA$: in view of this the ligand should not be viewed as a dihapto species forming a pure beryllamonocycle, but as a tetrahapto chain forming a polycycle. There is strong bond fixation and distance alternation along the chain.

$D_{n h}, D_{n d}$ and $C_{n v}$ species

Table 3 lists the geometrical parameters resulting from constrained optimisations in the point group $D_{n h}$ and $D_{n d}$, for species $\left(\mathrm{C}_{n} \mathrm{H}_{n}\right)_{2} \mathrm{Be}$ and $C_{n v}$ for species $\left(\mathrm{C}_{n} \mathrm{H}_{n}\right) \mathrm{Be}$ (n even) or $\left(\mathrm{C}_{n} \mathrm{H}_{n}\right) \mathrm{BeH}$ (n odd): the corresponding energies are listed in Table 1. With the exceptions of $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Be},\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Be}$, and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{BeH}$, discussed previously [2], no carbocycle (CH$)_{n}$ forms an η^{n} derivative of stability comparable with that of the free optimised structure usually of lower symmetry and lower η number. The smallest energy difference occurs between the $D_{4 h}$ isomer of $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2}$ Be and its freely optimised analogue of $D_{2 h}$ symmetry which is only some $64 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more stable: the largest energy difference amongst monoberyllium species is that between $D_{6 h}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$ and the freely optimised η^{1}, η^{2} isomer, of $279.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$, while amongst diberyllium compounds the $D_{8 h}$ isomer of $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}$ is some $766 \mathrm{~kJ} \mathrm{~mol}^{-1}$ less stable than the freely optimised isomer.

A number of structural features show regular variations as the value of n changes. As n increases, so does the internal CCC angle in the rings, and simulta-
TABLE 7
ENERGIES (eV) AND SYMMETRIES OF π ORBITALS IN LARGER BERYLLAHETEROCYCLES Cs ${ }_{5} \operatorname{Be}$ TO C8Be

$\mathrm{C}_{5} \mathrm{BeH}_{6}$			$\mathrm{C}_{6} \mathrm{BeH}_{6}$		$\mathrm{C}_{7} \mathrm{BcH}_{8}$			$\mathrm{C}_{8} \mathrm{BeH}_{8}$		
$C_{2 U}{ }^{a}$		C_{s}	C_{21}		$\mathrm{C}_{20}{ }^{\text {a }}$	\cdots	C_{8}	$C_{2 v}$	$C_{2}{ }^{b}$	
3.675	B_{1}	3.566	3.691	B_{1}	4.031	B_{1}	3.819	3,760	B_{1}	3.290
1.185	B_{1}	1.417	2.387	A_{2}	1.655	B_{1}	1.733	2,512	A_{2}	2.884
0.685	A_{2}	0.509	0.622	B_{1}	1,372	A_{2}	1,267	1,322	B_{1}	1.208
-2.240	B_{1}	-1.918	-0.117	A_{2}	-0,652	B_{1}	-0.231	0.943	A_{2}	0.050
					-2.203	A_{2}	-2.052	-0.727	B_{1}	-0.072
-9.895	A_{2}	-9.626	-8,833	B_{1}	-9.391	B1	-9.010	-8.378	A_{2}	-9.065
-12.343	B_{1}	-12.167	-9.972	A_{2}	-11.034	A_{2}	-11.248	-10.029	B_{1}	-0.629
			-12.024	${ }^{B} 1$	-12.852	B_{1}	-12.656	-10,913	A_{2}	-10.843
								-12.142	B_{1}	-11.469

${ }^{a}$ Constrained optimisations, ${ }^{b}$ Optimised from spiro- $\mathrm{Be}\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)_{2}, D_{2 h}$ or $D_{2 d}$.
neously the CH bond length increases. At the same time, the parameter h_{1}, the perpendicular distance of the beryllium atom from a ring decreases, although care must be taken here to compare like species with like: the value of h_{1} is much greater in $\left(\mathrm{C}_{n} \mathrm{H}_{n}\right) \mathrm{Be}_{2}$ than in $\left(\mathrm{C}_{n} \mathrm{H}_{n}\right) \mathrm{Be}$ for the same value of n. Again comparing like with like, as n increases, the value of CC decreases, as also does h_{2}, the perpendicular distance of the plane defined by the carbon atoms of a ring to the plane defined by the hydrogen atoms. For small ring compounds h_{2} is ca. $0.5 \AA$, so that the hydrogen atoms are strongly tilted away from the beryllium atom: as the ring size increases, this tilt decreases to less than $0.01 \AA$ in ($\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{8}$)Be; in the $D_{n h}$ species $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Be}_{2}$ and $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Be}_{2}, h_{2}$ must be zero.

As in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Be}[2,4]$ only a single minimum was calculated by MNDO for the location of the beryllium atom when the rings in $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$ were constrained to be parallel, either eclipsed or staggered, and the beryllium was contrained to various sites on the six-fold axis: since the single minimum in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{-}$ Be appears to be a computational artefact [7], those in the $D_{6 \hbar}$ and $D_{6 d}$ isomers of $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Be}$ may be also.

References

[^1]
[^0]: * To receive any correspondence.

[^1]: 1 M.J.S. Dewar and W. Thiel, J. Amer. Chem. Soc., 99 (1977) 4899.
 2 C. Glidewell, J. Organometal. Chem., 217 (1981) 273.
 3 R.P. Linstead and J.M. Robertson. J. Chem. Soc., (1936) 1736.
 4 M.J.S. Dewar and H.S. Rzepa, J. Amer. Chem. Soc., 100 (1978) 777.
 5 C.H. Wong, T.Y. Lee, K.J. Chao and S. Lee, Acta Cryst. B, 28 (1972) 1662.
 6 C. Wong, T.Y. Lee, T.J. Lee, T.W. Chang and C.S. Lieu, Inorg. Nuclear Chem. Lett., 9 (1973) 667.
 7 A. Haaland, Acta Chem. Scand., 22 (1968) 3030.
 8 J.R. Bews and C. Glidewell, J. Mol. Structure, in press.
 9 J.R. Bews and C. Glidewell, J. Mol. Structure, in press.

